

Web3D May 25, 2015

Mark Freeburn

What will we cover

- □ Introduction to AAM
- Describe 3D for the built environment
- Applications in 3D Smart Cities
- **Describe 3D with points**
- **D** The 3D web experience

AAM experience

Geospatial services

- **Producer**
- **Provider**
- **D** Platform

DESCRIBING 3D IN THE BUILT ENVIRONMENT

3D is more than visualisation

OGC Levels of Detail

_ # ×

CityGML is

- □ an imprecise standard with
- varied 3D modelling techniques
- □ made for a range of users
- □ made for a range of hardware
- □ made for a range of software
- and data formats

OGC Levels of Detail

Which leads to

- □ challenging procedural generation
- varied data integration and interoperability
- perplexing exchange format
- And a large amount of storage

Problems with LOD's

The Problem

Flightpath Script Spatial Viewpoint Settings View We

Narrative definition without clear specification of requirements

High degree of freedom for model acquisition

Absence of expected attributes and features

Application of LOD's

File Animation Flightpath Script Spatial Viewpoint Settings View Window Help

Which results in

- □ data not fit for purpose
- variations making it illogical for an exchange format
- being difficult to estimate and compare costs
- LOD not granular enough to describe model to either expectation or need

LOD and Complex geometry

LOD and Complex geometry

LOD and Complex geometry

LOD Model options

APPLICATIONS IN 3D SMART CITIES

□ Planning process reforms, such as

- From Assessment to Compliance
- Zoning changes number of storeys
- 3D GIS Tools to define proposed building envelopes
- Visual assessment Workflows
 - "can it be seen from here"
 - Planning and design
 - 3D GIS tools to test assumptions and decisions

Planning assessment

Thematic display of building energy data

Solar Potential Assessment tools

Solar PV Mapping and Array Siting

Panel Details	6		
Panel Heigh	t i		
≅.00m			:
Panel Webb	61)		
10.00m			
Panel Depth	67		
6.00m			:
Paral 18.			
14.00*		(I)	:
Panel lead	ng		
343.00*			1
Panel Analy	sis Resolution (Low)	1 m	
0			-
		11100000 111000000 11000000	
elect panel k	ewition for analysis		
Date/Time Range		Appearance	
🖉 Enable Daylight Savings		😥 Blocked Points	
Start Date		W Blocked Lines	
21/12/2013 +		Blocked End Point	
Cota: Serple Progamicy		12 Blocked End Line	
Honthly		Cear Points	
End Date		12 Ocar Lines	
21/12/2014 *		Panel Target	
Start Firm		V Incidence Shading	
Sunde	9:00:00 A.M.		_
Time Sample Frequency		Score	
5 Merutana *		Blocked: 29 Cicar 1229	
Ind Time		Total: 1258 Score I: 0.73	
E Sumart St00:00 PM. C		Score 21: 0.45 Score 11: 0.50	
200.00+		81	
		543	
		Analyse	
Clear Results		Save Date its	

Analyse Panel

Transport planning

Flood inundation

Fireworks safety planning

. File Animation Flightpath Script Spatiel Wenpoint Settings View Window Help

_#×

BIM data integration

Community consultation

- Development of BIM for use as foundation for redevelopment project
- Requires information on Fly-overs, pedestrian and road access ways
- Performed discretely and with minimal impact to public

DESCRIBING 3D WITH POINTS

Other 3D representations

Surface Models

Points
TIN
GRID

Other 3D representations

Indiscrete point cloud

- **Take the example of Dense LiDAR of forest cropping stock**
- □ How do we describe a single tree

Discrete point cloud

With a 50% overlap and dual scanner heads we get to see the trees from all sides

The outcome of single tree cropping stock

Describing built environment

Combining geometry and points

THE 3D WEB EXPERIENCE

^{- 100% -}

